COMBINATORICA

Bolyai Society - Springer-Verlag

ON BUTLER'S UNIMODALITY RESULT

YUGEN TAKEGAHARA

Received August 5, 1997

For a partition λ , let $\alpha_{\lambda}(i;p)$ denote the number of subgroups of order p^i in a finite abelian p-group of type λ . Then $\alpha_{\lambda}(i;p)$ is a polynomial in p with nonnegative coefficients, which depends only on λ and i. Butler proved that $\alpha_{\lambda}(i;p) - \alpha_{\lambda}(i-1;p)$ where $1 \leq i \leq |\lambda|/2$ has nonnegative coefficients. We prove this fact by using formulas shown by Stehling.

A partition is any sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r, \dots)$ of nonnegative integers containing only finitely many nonzero terms that satisfy

$$\lambda_1 > \lambda_2 > \cdots > \lambda_r > \cdots$$

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r, \dots)$ is a partition, $|\lambda|$ denotes the sum of the nonzero λ_i :

$$|\lambda| = \lambda_1 + \lambda_2 + \cdots + \lambda_r + \cdots$$

and λ is called a partition of $|\lambda|$. For each partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r, 0, \dots)$, we denote by $\alpha_{\lambda}(i; p)$, where p is a prime integer, the number of subgroups of order p^i in the direct product of cyclic p-groups

$$\mathbf{Z}/p^{\lambda_1}\mathbf{Z}\times\mathbf{Z}/p^{\lambda_2}\mathbf{Z}\times\cdots\times\mathbf{Z}/p^{\lambda_r}\mathbf{Z}$$

that is called a finite abelian p-group of type λ . Then $\alpha_{\lambda}(i;p)$ is a polynomial in p with nonnegative coefficients, which depends only on λ and i ([1], [2]). Let $\alpha_{\lambda}(i;p) = 0$ if either i < 0 or $i > |\lambda|$. It is well known that

$$\alpha_{\lambda}(i;p) = \alpha_{\lambda}(|\lambda| - i;p).$$

The purpose of this paper is to give a proof of the theorem below by using formulas shown in [2].

Mathematics Subject Classification (1991): 20K01

Theorem 1. ([1]) Let λ be a partition of s, and let i be an integer such that $1 \le i \le s/2$. Then $\alpha_{\lambda}(i;p) - \alpha_{\lambda}(i-1;p)$ has nonnegative coefficients.

For each partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r, \dots)$ such that $|\lambda| > 0$, let

$$\tilde{\lambda} = (\lambda_1, \dots, \lambda_{k-1}, \lambda_k - 1, \lambda_{k+1}, \dots)$$

where k is the largest number satisfying $\lambda_k = \lambda_1$, and let

$$\hat{\lambda} = (\lambda_2, \lambda_3, \dots, \lambda_r, \dots).$$

When $\lambda = (0,0,...)$, let $\hat{\lambda} = \lambda$. For each partition λ of a positive integer s, by [2, Theorem 1],

$$\alpha_{\lambda}(i;p) = \alpha_{\tilde{\lambda}}(i;p) + p^{s-i}\alpha_{\hat{\lambda}}(s-i;p),$$

which is equivalent to the following.

Lemma 1. ([2, Corollary]) Let λ be a partition such that $|\lambda| > 0$. Then

$$\alpha_{\lambda}(i;p) = \alpha_{\tilde{\lambda}}(i-1;p) + p^{i}\alpha_{\hat{\lambda}}(i;p).$$

Combining these results, we have the following.

Lemma 2. Let λ be a partition of a nonnegative integer s. Then

$$\alpha_{\lambda}(i;p) - \alpha_{\lambda}(i-1;p) = p^{i}\alpha_{\hat{\lambda}}(i;p) - p^{s-i+1}\alpha_{\hat{\lambda}}(s-i+1;p).$$

We provide the following.

Lemma 3. Let λ be a partition, and let $|\hat{\lambda}| = t$. Suppose that Theorem 1 holds for any partition μ satisfying $|\mu| \le t$. Let i be an integer, and let k be a nonnegative integer such that $2i-t \le k$. Then $\alpha_{\lambda}(i;p)-p^k\alpha_{\lambda}(i-k;p)$ has nonnegative coefficients.

Proof. Let $|\lambda| = s$, and we use induction on s. The lemma is true if s = 0. Suppose that $s \ge 1$. Then it follows from Lemma 1 that

$$\alpha_{\lambda}(i;p) - p^k \alpha_{\lambda}(i-k;p) = \alpha_{\tilde{\lambda}}(i-1;p) - p^k \alpha_{\tilde{\lambda}}(i-1-k;p) + p^i \Big\{ \alpha_{\hat{\lambda}}(i;p) - \alpha_{\hat{\lambda}}(i-k;p) \Big\} \,.$$

Since $k \geq 2i-t > 2(i-1)-(t-1)$, it follows from the inductive assumption that $\alpha_{\tilde{\lambda}}(i-1;p)-p^k\alpha_{\tilde{\lambda}}(i-1-k;p)$ has nonnegative coefficients. If $i \leq t/2$, the hypothesis yields that $\alpha_{\hat{\lambda}}(i;p)-\alpha_{\hat{\lambda}}(i-k;p)$ has nonnegative coefficients. Furthermore, if i > t/2, $\alpha_{\hat{\lambda}}(t-i;p)-\alpha_{\hat{\lambda}}(i-k;p)$ has nonnegative coefficients, because $i-k \leq t-i < t/2$. Since $\alpha_{\hat{\lambda}}(i;p)=\alpha_{\hat{\lambda}}(t-i;p)$, it follows that $\alpha_{\hat{\lambda}}(i;p)-\alpha_{\hat{\lambda}}(i-k;p)$ has nonnegative coefficients

in any case. The result follows from these facts, thereby completing the proof of Lemma 3.

Using the lemmas above, let us prove Theorem 1.

Proof of Theorem 1. We use induction on s. The result is clear if s = 0. Suppose that $s \ge 1$. Let $|\hat{\lambda}| = t$. Then Lemma 2 yields that

$$\alpha_{\lambda}(i;p) - \alpha_{\lambda}(i-1;p) = p^i \left\{ \alpha_{\hat{\lambda}}(t-i;p) - p^{s-2i+1} \alpha_{\hat{\lambda}}(t-s+i-1;p) \right\}.$$

Here, t-s+i-1=(t-i)-(s-2i+1). Since $i\leq s/2$, it follows that s-2i+1>0. Furthermore, we obtain s-2i+1>2(t-i)-(2t-s). Then it follows from the inductive assumption and Lemma 3 that $\alpha_{\hat{\lambda}}(t-i;p)-p^{s-2i+1}\alpha_{\hat{\lambda}}(t-s+i-1;p)$ has nonnegative coefficients. We have thus completed the proof of Theorem 1.

The next theorem follows from Theorem 1 and Lemma 3, which is equivalent to Theorem 1.

Theorem 2. Let λ be a partition, and let $|\hat{\lambda}| = t$. Let i be an integer, and let k be a nonnegative integer such that $2i - t \leq k$. Then $\alpha_{\lambda}(i;p) - p^k \alpha_{\lambda}(i-k;p)$ has nonnegative coefficients.

References

- [1] L. M. Butler: A unimodality result in the enumeration of subgroups of a finite abelian group, *Proc. Amer. Math. Soc.*, **101** (1987), 771–775.
- [2] T. Stehling: On computing the number of subgroups of a finite abelian group, *Combinatorica*, **12** (1992), 475–479.

Yugen Takegahara

Muroran Institute of Technology 27-1 Mizumoto, Muroran 050, Japan yugen@muroran-it.ac.jp